Global behavior of a third order difference equation with quadratic term
نویسندگان
چکیده
Abstract In this paper, we solve and study the global behavior of admissible solutions difference equation $$\begin{aligned} x_{n+1}=\frac{x_{n}x_{n-2}}{-ax_{n-1}+bx_{n-2}}, \quad n=0,1,\ldots , \end{aligned}$$ x n + 1 = - 2 a b , 0 … where $$a, b>0$$ > initial values $$x_{-2}$$ $$x_{-1}$$ $$x_{0}$$ are real numbers.
منابع مشابه
Global Behavior of a Higher-order Rational Difference Equation
We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that...
متن کاملSTUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM
In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.
متن کاملGlobal Behavior of the Difference Equation
The main objective of this paper is to study the qualitative behavior for a class of nonlinear rational difference equation. We study the local stability, periodicity, Oscillation, boundedness, and the global stability for the positive solutions of equation. Examples illustrate the importance of the results Keywords— Difference equation, stability, oscillation, boundedness, globale stability an...
متن کاملGlobal Dynamics of Certain Homogeneous Second-Order Quadratic Fractional Difference Equation
We investigate the basins of attraction of equilibrium points and minimal period-two solutions of the difference equation of the form x(n+1) = x²(n-1)/(ax²(n) + bx(n)x(n-1) + cx²(n-1)), n = 0,1, 2,…, where the parameters a, b, and c are positive numbers and the initial conditions x₋₁ and x₀ are arbitrary nonnegative numbers. The unique feature of this equation is the coexistence of an equilib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletin De La Sociedad Matematica Mexicana
سال: 2021
ISSN: ['2296-4495', '1405-213X']
DOI: https://doi.org/10.1007/s40590-021-00337-z